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SUMMARY 

A numerical study of computations in backward-facing steps with flow 

separation and reattachment, using the Reynolds stress closure is 

presented. 

The highlight of this study is the improvement of the Reynolds- 

stress model (RSM) by modifying the diffusive transport of the 

Reynolds stresses through the formulation, solution and subsequent 

incorporation of the transport equations of the third moments, "k I 

into the turbulence model. The diffusive transport of the Reynolds 

stresses, represented by the gradients of the third moments, attains 

greater significance in recirculating flows. The evaluation of the 

third moments by existing algebraic correlations is inadequate but the 

third moments evaluated by the development and solution of the complete 

transport equations are superior than those obtained by the algebraic 

correlations. 

A low-Reynolds number model for the transport equations of the third 

moments is developed and considerable improvement in the near-wall 

profiles of the third moments is observed. The values of the empirical 

constants utilized in the development of the model are recommended. 

The Reynolds-stress closure is consolidated by incorporating the 

equations of,k and E ,  containing the modified diffusion coefficients, 

and the transport equations of the third moments, 

Reynolds stress equations. 

"k, into the 

Computational results obtained by the 

original k-e model, the original RSM and the consolidated and modified 

RSM are compared with experimental data. Overall improvement in the 

i 



predictions is seen by consolidation of the RSM and a marked improvement 

in the profiles of u u is obtained around the reattachment region. i jyC 
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CHAPTER 1 

INTRODUCTION 

1.1 Characteristics of Backward-Facinn SteD Flows 

The phenomena of flow separation with the consequent wake formation, 

reattachment and recirculation occur in a vast array of engineering 

applications. Engineers use it to their advantage in augmenting the 

performance of equipment like combustors, heat exchangers and reactors. 

On the other hand, they also devote considerable effort in streamlining 

airfoils and similar boat-tailed bodies in order to minimize the 

incidence of flow separation. 

responsible for the optimal operation of a system, which just goes to 

show the enormous significance of being able to correctly study and 

model it. 

Very often this phenomena may be held 

Two-dimensional backward-facing step flows have been extensively 

used in experimental as well as theoretical (numerical) methods to study 

the phenomena of flow separation, recirculation and reattachment. This 

class of flows possesses all the important aspects of separation, 

recirculation and reattachment, but at the same time, owing to their 

geometrical simplicity, they render themselves to easier experimentation 

and computation, without loss of flow complexity or susceptibility to 

modeling modifications. 

Moreover, due to greater interest in this field, there exist 

relatively large sets of data on such class of flows which facilitates 

easier validation with modeling trends. 

measurements of higher order moments of turbulence have not yet been 

explored widely. 

However, some of the data like 
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Figure 1.1 depicts the flow field and the regimes in a typical 

backward-facing step. The upstream boundary layer separates at the 

sharp corner forming a free-shear layer. The separation line is 

straight and fixed at the edge of the step and there is only one 

separated zone. The streamlines are nearly parallel to the wall at the 

separation point, and significant upstream influence occurs only down- 

stream of separation. 

An ordinary boundary layer develops on the upper wall separated by 

an inviscid core from the viscous and separation effects on the lower 

wall. In case of an open top geometry, however, the inviscid core 

(potential flow) extends upto the top forming a free shear boundary at 

the surface. 

The separated shear layer appears to be similar to an ordinary 

plane-mixing layer through the first half of the separated flow region. 

The dividing streamline is slightly curved and the shear layer is not 

influenced by the presence of the walls. The important difference 

between the separated shear layer and the plane-mixing layer lies in the 

fact that the flow on the low speed side of the shear layer is highly 

turbulent due to the flow reversal and recirculation, unlike the low 

turbulence levels encountered in plane-mixing layers. 

The separated shear layer curves downward in the reattachment region 

and impinges on the wall. A fraction of this fluid gets deflected 

upstream into the recirculation region due to strong adverse pressure 

gradients causing the formation of a chaotic primary two-dimensional and 

a small three-dimensional eddy inside this region. Armaly et al. 

report the existence of two recirculation regions on the step-side wall 

(inside and outside this recirculation zone), and one on the upper wall. 

6 
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6,32 ,56  The length of the recirculation region varies periodically; 

this is attributed to a low frequency “flapping” motion of the shear 

layer but in the experiment of Ruderich and Fernholz , however, no such 4 5  

flapping was observed. 

The shear layer is subjected to the effects of stabilizing 

curvature, adverse pressure gradients and strong interaction with the 

wall in the reattachment region. 

wall which also results in their distortion by effectively irrotational 

The large eddies are confined by the 

mechanisms resulting in a spectacular decrease in the Reynolds stresses 

and the third moments thereby leading to the transport of turbulent 

kinetic energy and shear stresses toward the solid wall from the region 

of maximum turbulent intensity. 

After impinging on the wall, the remnant fluid in the reattached 

shear layer continues to flow downstream developing a boundary layer on 

the wall resulting in the formation of the redeveloping layer. 

Downstream of reattachment, the Reynolds stresses and the third 

moments continue to decay rapidly for a distance of several step 

heights. 9 Measurements of Bradshaw and Wong and Srnyth” reveal that the 

outer part of the reattached shear layer still has most of the 

characteristics of a free shear layer as many as 50 step heights 

downstream of reattachment verifying the persistence of large scale 

eddies which are developed in the separated free-shear layer. 

The process of separation and reattachment in backward-facing step 

flows, hence, makes them rather complex, and thus much different from 

boundary layer or mixing layer types of flows. Therefore, the 

turbulence model used for predicting this class of flows should not just 

be capable of accounting for all these phenomena but should also possess 

the sophistication of being accurate in doing so .  This led to the 
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modification and development of the Reynolds-Stress Model (RSM) by 

incorporating the third moments into it as shown in the subsequent 

sections. 

1.2 Literature Survev 

Turbulence models capable of predicting complex flows like those 

occuring inside a backward-facing step flow have been sought by many 

researchers. Among the existing models of turbulence, the three most 

popular ones are (i) k-e Model, (ii) Algebraic-Stress Model (ASM) and 

(iii) Reynolds-Stress Model (RSM). 

1,2,3,5,10,13,14,39,50,53 These models have been used to predict 

separating and recirculating flows to an acceptable degree of 

satisfaction, but owing to the simplifying assumptions made in their 

development, these models tend to be approximations of the real physical 

phenomenon, predicting results which may not altogether be too 

realistic. 

The k-6 Model of Jones and Launder3' relies on the assumption of an 

isotropic turbulent viscosity in the solution of the momentum equations 

and the equations of k and e .  As pointed out by Driver and 

Seegmiller , this model overestimates the isotropic turbulent viscosity 

in recirculating flows resulting in a higher spreading rate for the 

shear layer thereby yielding a premature reattachment. 

19 

A similar view is shared by Thompson and white la^^^ who concluded 
that the instantaneous reversed flow makes a positive contribution to 

the turbulence shear stress and therefore the isotropic (eddy) viscosity 

assumption may be inappropriate in regions with flow reversals. 

and Goel compared the results obtained by the above three models for 

flow into a channel with a backward-facing step and found the k-c model 

Amano 

5 
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to consistently underpredict the levels of the Reynolds stresses. Heat 

transfer results for flow into a pipe with a sudden expansion 

that the RSM improves the prediction over the k-c Model. 

3 showed 

The ASM of R ~ d i ~ ~  is a slight improvement over the previous model 

because it takes into consideration the presence of Reynolds stresses in 

the flow field. However, the ASM does not take into account the 

convective and diffusive transport of the Reynolds stresses but instead, 

relates it to the turbulent kinetic energy leading to algebraic 

equations for the Reynolds stresses. Modified version of this model 

containing a new dissipation rate equation wherein the production rate 

is made more sensitive to the streamwise curvature effects was developed 

by Sindir . The ASM, generally, as shown by Driver and Seegmiller, 

results in the inability of the model to locate the peak values of the 

turbulent Reynolds stresses due to an inadequate treatment of either the 

convection or diffusion mechanism in the kinetic energy transport 

equation. 

50 19 

The RSM comprises of individual transport equations for all the 

Reynolds stresses, u.u thus accounting for all the processes of 

convection, diffusion, production and dissipation of the stresses within 

1 j' 

the flow field. The diffusive transport of the Reynolds stresses is 

governed by the gradient of the third moments, 

develop an expression for this, a transport equation for the third 

In order to 
"iUj %* 

15 17,25 moments was formulated and through simplifying assumptions 

various terms in it were dropped out to yield algebraic expressions for 

the third moments, in terms of the Reynolds stresses and their spatial 

gradients. 
16 As shown by Cormack et al. , these algebraic expressions give 

satisfactory predictions of the third moments when compared with the 

experimental data for flows in channels, pipes, wall-jets and mixing 
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27,36,29,5a layers. 

These algebraic expressions for the third moments seemed to work 

satisfactorily for a simple boundary layer type of flows. 

pointed out by Chandrsuda and Bradshaw 

However, as 

12 , for flow in a backward-facing 

step, the u . u . ~  profiles beyond x/H - 12.0 had the same shape as those 
in a boundary layer but their magnitudes were larger by a factor of 10 

or more, for the same free shear velocity, indicating a need for some 

correction. They also pointed out that although streamwise decrease of 

third moments in the outer part of the shear layer roughly follows the 

decrease in the shear stress or shear stress gradient, the decrease of 

the third moments near the wall is far more rapid than the decrease of 

shear-stress or intensity gradient with streamwise distance thus 

throwing doubt upon the usefulness of the way of expressing in terms of 

a gradient diffusivity even as a pragmatic means of correlating 

experimental data. 

moments is a very significant part of the Reynolds-stress balance in 

mixing layers, it should be modeled with reasonable accuracy in 

calculation methods implying that the algebraic relations between the 

third moments and the Reynolds-stresses (or their gradients) are likely 

to be inadequate for strongly perturbed flows and that the effects of 

approach to a wall imply that any calculation method, intended to deal 

with reattaching and separating flows, should include a fairly 

sophisticated model for the third moments, preferably based on the 

transport equations of the third moments. 

1 J k  

They argued that since turbulent transport by third 

Parallel with the development of theoretical models, extensive 

experimental observations were being made on such flows using a variety 

of experimental techniques like laser-doppler and pulsed-wire 

anemometers and hot-wire probes. Nevertheless, 6,12,19,22,32,45,51,52 
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attempts at modeling the transport equations of the third moments and 

solving them iteratively with the transport equations of the Reynolds 

stresses have not been encountered in the literature to date. 

1.3 Objectives of the Investization 

The literature survey points out some of the shortcomings of the 

turbulence models and recommends different means for improvement, some 

of which are considered here. 

The objective of this investigation is to attempt to overcome some 

of these shortcomings and deficiencies and propose an improved 

of the Reynolds-Stress Model of turbulence. In order to carry 

complete this study, the general features that have been aimed 

accomplished are mentioned below. 

backward-facing step. 

The flow geometry employed 

version 

out and 

at and 

s the 

1. Formulation and development of transport equations for the 

third moments and the recommendation of different empirical 

constants used in the modeling process. 

Development of a low-Reynolds number model for the transport 

equations of the third moments in order to account for the 

viscous effects near the wall. 

2 .  

3 .  Consolidation of the RSM, wherein, the two momentum equations 

along with the equations of k, E and the Reynolds stresses, 

containing the third moments, and the transport equations of 

the t h i r d  moments are solved together iteratively. 

Converged values of the third moments obtained by the solution of 

their transport equations would be used to evaluate the diffusion rates 

of the Reynolds stresses in their transport equations, solution of which 
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would enable the evaluation of diffusion rates of k and e ,  thereby 

reducing the dependence on an isotropic assumption in the model. 
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CHAPTER 2 

TURBULENCE MODEL WITH GOVERNING EQUATIONS 

2.1 The Remolds Stress Model 

In order to account for the presence of the Reynolds stresses in the 

turbulent momentum equation, it becomes necessary to model and evaluate 

these Reynolds stresses suitably. 

One of the most commonly used correlation is that of Boussinesq 

approximation wherein 

aui au 2 
- pu.u = pt (- +i) _ -  6. .pk 

ax j axi 3 =J 
4 

(2.1.1) 

where p 

viscosity" which is analogous to the concept of laminar viscosity, p .  

Substitution of equation (2.1.1) into momentum equation yields 

is known as the "turbulent coefficient of viscosity" or "eddy t 

aui a i a p  i a  aui au 
at ax 1 J  p axi p ax ax axi 

j j j 

+ -  (U.U.) - - - - + - -  [ ( P  + Pt) (- + 4 1  - 

(2.1.2) 

Equation (2.1..2) is also known as the Boussinesq Effective Viscosity 

Model since ( p  + p ) together constitute the effective laminar and t 

turbulent viscosities. 

The eddy viscosity p has been further expressed as t 

C pk2 
- L  

E 
p t  

(2 .l. 3 )  

where C is a constant (== 0.09). 
/I 
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Since the concept of eddy viscosity is based upon the assumption of 

isotropic turbulence it is commonly referred to as “isotropic turbulent 

vi s cos i t y It . 

The Reynolds stresses can also be evaluated by modeling and solving 

the transport equation for u.u explicitly. 
l j  

The transport equation for the Reynolds stresses is given as 

The left side of equation (2.1.4) represents the convective 

transport of the Reynolds stresses and the terms on the right represent 

Term I = Production 

Term I1 - Dissipation 
Term I11 = Pressure-Strain Redistribution 

Term IV - Diffusion 
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Generally the second term of the dissipation and the last two terms of 

the molecular transport in the diffusion term are negligible. 

a fluid of uniform density p and viscosity p ,  the transport equation for 

the Reynolds stresses may be expressed in the form 

Thus for 

Du, u, 

i j 
L_J= Pij - €ij + 4ij + D  
Dt 

where 

( 2 . i . 5 )  

(2.1.6) 

au.ui 

ax, 
6 + Y  6ik - Y “I 

a UiP 
e - -  [UiUj\ + - Dij ax, jk P 

Closures for the terms in equation (2 .1 .6 )  have been proposed by 

different researchers as shown below. 

The production term P needs no further modeling since it consists ij 

of known and available components, essentially the Reynolds stresses and 

the mean strain rates. 

The closure for the dissipation term e has been adopted from 

R ~ t t a ~ ~  and which is also supported by several researchers, where it is 

ij 

assumed that 

2 
€ - -  6. . E  
ij 3 1J 

(2.1.7) 



where E - dissipation rate of turbulent kinetic energy. 
The pressure-strain closure 4 has been developed independently by ij 

30 34 using a two point correlation and by Launder et al. Naot et al. 

where a fourth order tensor is employed to simulate the pressure- strain 

effects. 

Modified versions of the pressure-strain closure containing effects 

due to temperature and gravitational field and resistance to large 

anisotropy have been proposed by different researchers 2 3 , 3 5 , 5 7  

Preliminary studies have revealed that the closure proposed by 
34 Launder et al. 

hence their closure has been retained in this study to evaluate the 

pressure-strain effects. 

gives better agreement with the experimental data and 

34 According to Launder et al., the closure for the pressure-strain 

effect is given as 

- 
2 u.u 2 

= -Cle - - 6 . . )  - B1(Pij - - 6..G) 
k 3 lJ 3 lJ 

'ij 

au, au, 2 
-B k (> + - B3(Qij - - 6. .G) 

ax axi 3 lJ 
j 

where 

C1 = 1.5, C2 - 0 .4  

(2.1.8) 

(2.1.9) 

(2.1. l o )  

(2.1.11) 
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and 

- aui 

j 
j ax 

G - U.U - (2.1.12)  

In order to model and approximate the diffusive mechanism of u.u 
1 j' 

the relative magnitudes of the various terms comprising the diffusive 

terms were investigated. 

The second and third parts in the bracket of Dij in equation (2.1.6) 

have been experimentally known to be much smaller than the third moments 

"k) and are consequently neglected. This is seen from the 
experimental data of Irvin for self-preserving jets in an adverse 

pressure gradient. 

stresses was nearly of the same magnitude as that obtained by the term 

29 

The profile for the total diffusion of the Reynolds 

of the third moments (uiuj\), indicating that the diffusive effects 

exercised by the pressure flutuations and viscous action are neglible 

compared with those due to uiujyc. 

term in order to account for the wall effect. 

However, we still keep 

17 Therefore, following Daly and Harlow , as explained in 

the diffusive transport term is cast as 

= cs -(- \Un 3) Dij 
axn 

The turbulence model described above has been known to 

the viscous 

Section 2.5, 

(2.1.13) 

give 

3 
satisfactory results for sudden expansions in circular pipes, and for 

plane backward facing step channels . 5 

In order to get as close to the real phenomenon as possible, the 

diffusive mechanism of the Reynolds stresses should be evaluated in 

terms of the third moments, uiujyc , explicitly. This modification and 
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improvement is discussed in the subsequent section. 

Upon comparison of results obtained by the above formulations 

((2.1.5) through (2.1.13)) with the experimental data for homogeneous 

free shear layers and near-wall turbulence, Launder et al. found that 34 

the near-wall streamwise stress component is appreciably larger and the 

transverse component much smaller than in the homogeneous free shear 

layer. 
- 

The levels of the shear stress component uv were also much 

smaller in the near-wall flow. Thus, in order to compensate for this 

34 phenomenon, Launder et al. proposed an additional wall term, dijW, to 

be added to equation (2.1.5). The modeling of this term is similar to 

the modeling of the pressure-strain term 4 of equations (2.1.8) such 

that its presence tends to increase the anisotropy of the normal 

ij 

stresses but tends to diminish the shear stress. 

According to Launder et al., 

= [0.125 - (U.U - - k6..) + 0.015(Pij - Qij)I - 
€2 'ijw k l j  3 1J 

(2.1.14) 

where Q and P are given by equations (2.1.10) and (2.1.11) respec- 

tively and 2 is the net distance from the walls described as 

ij ij 

With the incorporation of equation (2.1.14) into equation (2.1.5), 

the Reynolds-Stress Equation can be written as 

Du.u ~j 

Dt 

'ij - E ij + dij + Dij + dijW (2.1.15) 
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2 . 2  k-e Model and Its Modifications 

To determine the transport equation for k, the unaveraged transport 

equation for a single fluctuating velocity component u 

u and then time averaged. 

is multiplied by i 

Since k - uiL/2, the above operation yields i 

au auiL/2 ak 

at at at 
I- 

i u - =  i 

and the resulting equation yields as 

aU i aui aui 
- v(--> (-1 - u:u, - 

(2.2.1) 

(2.2.2) 

The term 

- aui 
j axi 

-u.u - 

is the generation rate of the kinetic energy and upon invoking the 

Boussinesq’s approximation, can be written as 

- aui Pt aui au aui 
G -u,u, - (- + --i> (-1 (2.2.3) 

The second term on the right side of equation (2.2.2) represents the 

diffusion rate and is modeled as 

Approximating the dissipation rate E by 

(2.2.4) 
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and neglecting other terms, the final transport equation for k reduces 

to 

ak pt Dk 1 a 
- = - -  [ ( p  + -) -1 - E  + G 

ax ak j Dt p ax 
j 

(2.2.5) 

where a represents the turbulent Prandtl number for turbulent kinetic 

energy. Likewise, the transport equation for dissipation rate E is 

k 

obtained by differentiating the unaveraged transport equation for u 

with respect to xa and then multiplying this equation through by 2u - i 

R and finally time averaging the resulting equation. 

i 
aU 

ax 
The final form of 

this equation is, 

where CE1 and C E 2  are constants equal to 1.44 and 1.92, respectively, 

and a is the turbulent Prandtl number for dissipation rate. 

In the modeling of the turbulent diffusive transport mechanism of 
€ 

kinetic energy k, the third moments, * 

in equation (2.2.2) are decomposed into the products of Reynolds 

stresses using Daly and Harlow's 17 approximation of equation (2.1.13). 

A further assumption of isotropy led to the simplified diffusion rates 

as shown in equation (2.2.4). 

Likewise, the turbulent diffusive transport mechanism of the dissi- 
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25 pation rate e was decomposed by Hanjalic and Launder as being 

proportional to 

and a further assumption of isotropy led to the final form of equation 

( 2 . 2 . 6 ) .  

30.31 
A low-Reynolds number model was developed by Jones and Launder 

to predict laminarization phenomenon, in which additional terms bearing 

functional viscosities were incorporated in the k- and €-equations. 
* 

Both the high and low-Reynolds number versions of k-c Model were 

applied by Amano and Goel' for computing the flow in a circular pipe 

having a sudden expansion. Computed values of the Nusselt numbers were 

generally close to the experimentally determined data of Amano et al. 1 

A better modeling of the turbulent diffusive transport processes of 

k and could be attained by not resorting to the Boussinesq's eddy 

viscosity assumption but instead, by evaluating the diffusive transport 

in terms of the Reynolds stresses in their original form. Thus, the 

modified versions of k- and €-equations can be expressed as 

Dk 1 a ak k ak 
= - - [ p  - + Ckp - U.U -1 - c + G (2.2.7) - 

E j axi 
j 

Dt p ax ax 
j 

2 
DE 1 a a€ a €  € e k- 

e - -  [ p  - + c,p - u.u -1 + ccl - G  - - 
€ j axi 

j (2.2.8) 
Dt ax 

axj 

where Ck and Ce are the diffusion coefficients for k and e ,  which have 

been originally recommended to be equal to 0.30 and 0.15, respectively. 

However, upon further investigation, these coefficients have been 
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recommended to be 0.10 and 0.30, respectively in this study. 

generation rate, G, is accordingly evaluated by using the expression 

given by equation (2.1.12). 

The 

2.3 TranSDOrt Equations for the Third Moments (TriDle Velocity Products) 

of Turbulence 

As discussed in Section 2.1, the turbulent diffusion of the Reynolds 

stresses is governed by the gradients of the third moments (equation 

(2.1.6)). This is expressed, employing Daly and Harlow's model, in 17 

terms of the product of the Reynolds stresses and their gradients 

(equation (2.2.13)). 

In order to obtain a transport equation for u.u the transport 
1 jY,' 

equation for a single fluctuating component of velocity u 

by uj\ and added to the two other forms of this equation obtained by 

interchanging the indices i, j, k, and finally time averaging as follows 

is multiplied i 

D 9 c  (2.3.1) 
Du Du 

Dt Dt j Dt 
i + Ui\ i + u.u - 

Du.u.\ 
1 1  

Dt - u;uk- 
15 As shown by Chou, this leads to the following transport equation for 

"iUj "k 

auk - aui 3) 
+ \uiu,t 

axR axR 

Du.u.y( 
1 1  

Dt + Uj\u.t (uiujul - 
aXR 

I-  

(1) 
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a 
+ u.u - [ v  (-- + -)] 

j ax R ax, 

( 2 . 3 . 2 )  

Equation ( 2 . 3 . 2 )  represents the transport of the third moments, "k t 

and shows how their convective transport is balanced by other terms 

which represent the combined transport effects due to generation, 

diffusion, pressure stress and dissipation. 

Terms I and I1 represent the production rates of u u due to the i jyC 
action of mean strains and the shear stresses. They need no further 

modification being rather explicit in their form. 

Term I11 may be rearranged as 

a 
Term 111 = - - "k", 1 

axR 
( 2 . 3 . 3 )  

indicating its diffusive nature. 
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Further simplification of equation (2.3.3) is adapted from Hanjalic 

in which the quadruple velocity correlations are expressed 25 and Launder 

in terms of Reynolds stresses as 

uiuj\ua - uiuj .\urn + Ui\.UjU1 + uiua .\Uj (2.3.4) 

Differentiating equation (2.3.4) with respect to x 

Term I1 yields 

and adding it to a 

- au a%Ui - au.u 
Term I1 + Term I11 = -[u u -2% + u.u - A] (2.3.5) 

a ax + 

axa i l  J J  

Equation (2.3.5), hitherto, represents the production rate of u u 

to the interaction of Reynolds stresses with their gradients. 
i j \  due 
Term IV 

indicates the pressure-stress effects and contains the combined effects 

of generation and redistribution. The modeling of the pressure-stress 

term is analogous to the modeling of the pressure-strain redistribution 

term of the Reynolds stresses in equation (2.1.8). 

Term IV is evaluated by first forming the Poisson equation for fluc- 

tuating pressure p by differentiating a transport equation for u with 

respect to x Upon changing the subscript j to 1 and the subscript i 

to k yields 

i 

i' 

1 a2p a 
9= - - --  

P ax,' a x ,  

Integrating this equation 

- aU auk a 
u)] - 2-- - '%"a - \ a 

aXR ax, aXR 
(2.3.6) a 

with respect to x, once and then multiplying 
it by u.u and finally time averaging the resulting equation yields 

I j  
aU auk 

ax, axa ax, axa 
a U.U ap a a  - 

li- - -  u.u f [- I- ' u p a  - \Urn>] + 2 1- -11% 
(2.3.7) 

l j  a% 



This integral is approximated as 
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Further simplification of equation (2.3.8) is done by assuming it to be 

equal to 

K - c  u u  - + c  u u u  - 
I ax A ijukk B i j I  (2.3.9) 

where C and C are arbitrary constants. Applying the approximation of 

equation (2.3.9) to the rest of the components in the term IV of 

equation (2.3.2), the final value of Term IV may be expressed as 

A B 

uiujYc Term IV - - (2.3.10) 

where the second term in equation (2.3.9) along with its coefficient is 

merged with Term I in equation (2.3.2) and the value of the coefficient 

C 

this approximation. 

modified accordingly to take up the deficiencies if any in making 
7 

Term V containing the viscous effects can be rearranged and written 

as 

ax ax, axR I 

aui a% aui au 

J ax axg ax, ax, 
+ u.(- ->+ \(- 4 1  

R 
(2.3.11) 

The first part in equation (2.3.11) represents the viscous diffusive 

transport of u.u while the second part represents the viscous 
1 j% 
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dissipation of u.u 1 j%. 

The modeling of this viscous dissipation term has been adopted from 

in equation (2.1.7). Owing to the modeling of the dissipation term E 

the similarity of the terms in equation (2.3.11) and the dissipation term 

(Term I1 in equation (2.1.4)) the dissipative effects influencing the 

ij 

transport of u u can be expressed as i jY. 

2 
- Uij + Sjk + Sik ) ck1I2 
3 

Dissipation - C (2.3.12) 

where the single fluctuating velocities are set proportional to k 112 

with the constant C 

any, in making this correlation. 

thrown in to account for the discrepancies, if 
€7 

Based upon parametric tests, the value of C is recommended to be 
€7 

0 . 1 0 .  

Reynolds-stress equation (equation (2.1.5)) as 

Equation (2.3.2) may then finally be cast in accordance with the 

Du.u.y, 

Dt 
1 1  (2.3.13) - i jk l  + 'ijk2 + Bijk - E  ijk + D  ijk 

where 

'ijkl = production due to mean strains 

5) auk aui 

aXR 
+ '3cuiu1 

- 
+ UjUkU.t I -  c ( u u u  - 

p i j R  

'ijk2 = Production due to Reynolds stresses interacting 
with their gradients 
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= Pressure-Stress effects 'ijk 

e- 

7 ; "iujYc - - c  

6 = Dissipation due to viscous action ijk 

2 
- ( 6 i j  + hjk + hki) e kl" - C (2.3.14) 

e7 3 

is used to add the second term in equation (2.3.9). ijk' where C in P 

Solution of the transport equations of the third moments (equation 

(2.3.13)) would yield the values of u.u which when plugged into 

equation (2.1.5) would give the diffusion rate of the Reynolds stresses 

P 

1 juk 

enabling a better approximation and modeling of the Reynolds-stress 

closure. 

2.4 Low-Remolds Number Model f o r  the Third Moments 

In order to incorporate the viscous effects that are predominant 

near the wall, a low-Reynolds number modification has been developed 

here to improve the agreement with experimental data. 

The transport equation for uiuj\ incorporating this low-Reynolds 

number model is 

D'iu.j% - P ijkl + 'ijk, + Bijk + Bijh - cijk + Dijk 
Dt 

(2.4.1) 

This equation is identical to equation (2.3.13) except for the term 

which is the additional pressure-stress contribution needed to *ijh 

distribute and control the levels of u u 

near-wall region. 

in the viscosity dominated i jyC 
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The theory of this low-Reynolds number model is based upon the 

existence of three regions: i) viscous sublayer, ii) buffer layer, and 

iii) the fully turbulent core. 

distance y 510.0 where 

The viscous sublayer exists upto a 

+ 

In this region the dissipation rate is governed by the equation 

ak1I2 

aY 
dissipation - 2v (-) 

The dissipation rate in the buffer layer is formulated as 

k3/2 

dissipation - C - 
cIy 

w 

( 2 . 4 . 2 )  

( 2 . 4 . 3 )  

are together given as ijk + 'ijkw Thus, the terms 8 

where C and C 

its corresponding near-wall approximation. 

are modified coefficients for the pressure-stress and 
7 w 

The symbol I A ,  B I 
represents the largest of the arguments in this bracket. 

The development and incorporation of equations ( 2 . 4 . 2 )  and ( 2 . 4 . 3 )  

1 is based upon the near-wall model of Amano et al., where boundary 

conditions of the wall have been derived using these profiles for the 

dissipation rate. 

In equation ( 2 . 4 . 3 ) ,  C is another constant defined as I 

pc 

-314 CI - n C  
P 

( 2 . 4 . 5 )  

where K is the von Karman constant and is equal to 0 . 4 2 .  
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Figure 2.1 shows the variation of the dissipation rates obtained by 
+ equations (2.4.2) and (2.4.3), with the non-dimensional distance y from 

the wall. The dissipation rate, c ,  obtained by the solution of the E -  

equation (equation(2.2.6)) is also  shown for comparison. 

As shown in the figure, the dissipation rate is considerably 

augmented in the near-wall region and therefore justifies the inclusion 

of equations (2.4.2) and (2.4.3) for correcting the near-wall values of 

in the low-Reynolds number model. "iUj "k 
The dissipation rate given by equation ( 2 . 4 . 2 )  is higher in the 

near-wall region but decays very rapidly with increasing distance from 

the wall, as seen in the figure, Thus, the incorporation of equation 

(2.4.4) in the transport equations of the third moments enables the 

viscosity dominated near-wall region to exercise its influence on the 

behavior of the third moments appropriately. 

2 .5  Algebraic Eauations for the Third Moments of Turbulence 

Algebraic correlations have been developed by different researchers 

to evaluate the third moments, without solving the complete transport 

equation for u u . i jYc 

In order to arrive at these algebraic equations considerable 

simplifying assumptions have been made which tend to introduce imperfec- 

tions in the modeling. 

Based upon their experimental measurements of asymmetric flow in a 
25 

plane channel, Hanjalic and Launder found that the term P in ijk 

equation (2.3.13) was negligible compared to other terms in the 

equation, especially for wall boundary layers. Furthermore, upon 

neglecting the convective transport as well as the viscous dissipation 

and molecular diffusion, the equation (2.3.13) reduces to 



(2.5 .l) 

Upon substituting the values of Bijk and P from equation (2.3.14) ijk, 
into equation 

e quat ion 

L (2.5.1), Hanjalic and Launder 25 obtained the following 

(2.5.2) 

Daly and Harlow17 simplified equation (2.5.2) by suitable contraction 

and obtained the following correlation 

After further simplification, Shir 4 0  proposed 

(2.5.3) 

(2.5.4) 

16 Cormack et al. obtained these algebraic expressions by approximating 

the experimentally determined profiles for u.u 

polynomials with coefficients, chosen to give a least squares fit to the 

- 
and uiuj% with 

1 j' 

data and discretized the cross-stream coordinate in each flow into a 

certain number of grid intervals. They used the most general model for 

the triple velocity correlation tensor as generated using the asymptotic 

approach of Lumley and Khajeh Nouri. 37 

They obtained a set of algebraic equations and used the least 

squares approach to solve these set of equations and optimized the 

parameters. The model they obtained is as follows 
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k2 ak 

+ ij,k %j,i)’ + a  
+ O5 (aik,j 

k ak 

+ a  12  (aikaj.t,l + aij%l,l + a jk a il,l > ) I  

where 

2 - 
a -  U.U - - 6..k 
ij l j  3 1J 

(2.5.5) 

(2 .5 .6 )  

and 

aa 

ax 
I 

k 
ij ,k a 

Out of the 20 parameters (a.) that they had started out with, they 
1 

12 * were able to determine the most significant ones as al, a5, a7, and a 

The values of these parameters have been recommended for various kinds 

of flows along with the universal values applicable to all flows wherein 

- -8.14 x 
a5 - -1.72 x 10 

a7 = - 4 . 8 0  x 10 

al 
- 2  

- 2  

- -1.02 x 10-I ?2 (2 .5 .7 )  

In arriving at the above mentioned algebraic correlations (equations 

(2.5.2) - (2 .5 .5 ) )  various simplifying assumptions had been made which 

necessitated the deletion of different terms from equation (2.3.13) 
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thus increasing the deviation from the actual physical phenomenon. 

more realistic modeling would be obtained if the complete transport 

equation of the third moments could be solved iteratively. 

A 

Table 2.1 lists the recommended values for constants used in the 

present study. 
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Table 2.1 Recommended Values for the Constants Used in Turbulence 
Modeling. 

B1 

B2 

B3 

c2 

cl? 

cs 

c€ 

c€l 

cf2 

‘k 

C 
P 

C 

C 
€7 

P 

C 

n 

Ok 

yw 

U 
€ 

= (C2 + 8)/11 
- (30C2 - 2)/55 
- (8C2 - 2)/11 
= 1.5 

= 0.4 

- 0.10 
= 2.548 

= 1.0 

= 0.25 

- 0.30 
- 1.44 
= 1.92 

= 0.10 

= 0.09 

= 3.0 

= 8.0 

- 0.42 
= 1.0 

- U C  2 -112 

A 
(Ce 2-c€1) 
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CHAPTER 3 

NUMERICAL PROCEDURE 

3.1 Formulation and Discretization of the Transport Equations 

The steady state 2-dimensional equations for all the parameters 

solved in this study can be, in general, cast and expressed as 

- 
where 4 stands for different dependent variables U, V, k, E ,  U.U. and 

I? and I' are the corresponding diffusion coefficients in the 
1 J  

"iujuk* 1 2 

streamwise and the normal directions to the flow respectively. The re- 

4' maining terms are lumped into the source (or sink) term S 

Equation (3.1.1) shows how the convective transport (net rate of 

inflow of 4 to the cell by convective fluxes) is balanced by the 

diffusive transport (net rate of inflow of 4 to cell by diffusive 

fluxes) and the generation or dissipation rate of 4 within the cell. 

Discretization of equation (3.1.1) is carried out by dividing the 

computational domain into elemental control volumes and then integrating 

the equation over each of these control volumes. Figure 3.1 shows a 

typical node P inside its control volume bordered by neighboring nodes 

E, W, N, S (representing the east, west, north and south locations). 
40 Following Patankar, equation (3.1.1) is integrated over this 

control volume and thus can be written as 

(3.1.2) 
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where, 

(3.1.3) 

(3.1.4) 

and 

JS dVol = Su + Spdp 4 
In equation (3.1.3) A( (P. I )  is a function of the cell Peclet number P 
whose formulation depends upon the type of differencing scheme being 

1 i 

employed. The aspect of differencing scheme is discussed in the 

following section. The symbol [ IA,BI] is the same as the one used in 

( 2 . 4 . 4 ) .  

Equation (3.1.2) is the discretized algebraic form of the original 

differential equation (3.1.1). 

Figure 3.2 shows the staggered grid system employed in this study. 

The scalar cell denoted by the node P is used to discretize and compute 

the scalar parameters like P, k, c ,  u , and V~ and u.u 
- - 

2 9 

1 jYC. 

The U-momentum cell is staggered with respect to the scalar cell by ' 

shifting it by half a cell to the left while the V-momentum cell is 

staggered by shifting it half a cell below the scalar cell. 

for uv, however, is staggeredby shifting it half a cell to the left and 

half a cell below the scalar cell as shown in the figure. 

The cell 
- 

The reason for doing this staggering of the cells is the advantage 

gained by making the velocities available at locations where they would 

facilitate gradient calculation thus making it easier to satisfy the 

continuity equation. Likewise, the stresses are evaluated at locations 
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where they would enable their gradients and production rates to be 

evaluated easily. 

3.2 Differencing Scheme for the Discretized Eauations 

After having transformed the original differential transport 

equation (equation (3.1.1)) into an algebraic equation (equation 

(3.1.2)), it is required to prescribe a formulation for the combination 

of the convective and diffusive fluxes such that the coefficients in 

equation (3.1.2) may be evaluated. Formulation of a scheme to combine 

the convective and diffusive fluxes is referred to as differencing 

scheme . 
* 

The differencing scheme employed in this study has been adopted from 

1 Amano et a1 . 
expanded upto 

in which the exponential (exact) scheme in Table 3.1 is 

the fourth order term as 

1 1 1 
[ I O ,  (1 - - !Pi] + - lPil' - - lpi14) I1 

2 12 720 
(3.2.1) 

1 As shown by Amano el al., the deviation of the hybrid scheme from 

the exact exponential scheme is quite large at P = f 2 and so it is i 

TABLE 3.1. Function A( IPil) for Different Differencing Schemes 

Scheme Function A( IP,) I 
Central differencing 1.0 - 0.5 lPil 
Upwind 1.0 

Hybrid [ I O ,  (1 - 0.5 lPil)ll 
Exponential (Exact) IPl/(elPil - 1) 

1 1 1 

Fourth Order 
4 J. 2 I J. 

[ I O ,  (1 - -lPJ + +Pil - +Pil )I] 
2 12 720 
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rather premature to neglect the diffusion effects as soon as IP.  I 
exceeds 2. 

1 

The fourth order scheme of equation (3.2.1) reduces to the upwind 

scheme and neglects the diffusion effects after IP.  I becomes greater 
than 4 which makes it approach closer to the exponential (exact) 

solution. Moreover, the fourth order scheme is less expensive to 

compute compared to the exponential scheme, although it may involve 

extra expenses compared to computation with the hybrid scheme. An 

additional advantage of the fourth order scheme lies in the fact that 

unlike the hybrid scheme, it introduces very little or no false 

diffusion effects into the solution. False diffusion is an inherent 

aspect of the hybrid differencing scheme making it less accurate at high 

Reynolds number flows, convection dominated flows and more s o ,  for 

recirculating flows. 

1 

3 . 3  Solution of the Eauations 

After having formulated and descretized the equation as shown in the 

previous sections, they are solved iteratively using line-by-line 

solution method. 

various parameters is prescribed and these are improved upon from one 

line to the other in successive iterations. 

The initially guessed values of the flow field for 

42 As shown in Roache, for the solution of the equations along the 

nodes on each line (e.g. 

the neighboring lines are assumed to be temporarily known (previously 

stored values). 

then reduces to one where only three values (4p,  4, and ds) are unknown. 

The set of equations for all nodes,on the North-South line then takes a 

simple form in which the non-zero coefficient matrix is tri-diagonal and 

North-South line), values of the parameters on 

The equation for each node on this North-South line 
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which is solved by the line-by-line iterative technique called TDMA 

(Tri-Diagonal Matrix Algorithm). 

3 . 4  Boundary Conditions 

The numerical solution of the transport equations requires the 

provision of correct boundary values in the flow domain. 

For backward-facing step flows, boundary conditions need to be 

prescribed at the walls and along the outflow section at the exit. 

At the wall boundaries, the "wall law" is used to specify mean 

velocities, turbulence kinetic energy, the dissipation rate, the 

Reynolds stresses and the third moments. 

For the mean velocities, the wall shear stress is determined using 

the velocity gradient at the wall, which is then used to prescribe the 

boundary values. 

For the turbulent kinetic energy, the generation rate at the wall is 

modified by incorporating the wall shear stress in the generation rate, 

which is then substituted in the transport equation of k thereby 

introducing the effect of the wall. 

The dissipation rate, however, is expressed in terms of the kinetic 

energy as 

E - -  ( 3 . 4 . 1 )  

which is similar to the equation ( 2 . 4 . 3 ) .  This value constitutes the 

boundary value for the dissipation rate. 

For prescribing the wall values for the Reynolds stresses, Launder 

had obtained proportionality correlations between u.u and U7 for 3 4  et al. 
l j  

channel flows as 
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Y1 dP 
= c . . u  2 - (1 - S..) - - 

lJ P dY2 
u.u i j  1 j 7  ( 3 . 4 . 2 )  

where U7 is the friction velocity and where y and y 1 2 represent the 

coordinates normal and parallel, to the wall in consideration, 

respectively. The coefficients C are given as ij 

C l l  - 5.1 
C12  * -1.0 

c22 = 1.0 ( 3 . 4 . 3 )  

Using the correlation.between k and U in the wall proximity region, 
? 

25 derived by Hanjalic and Launder, as 

2 k = 3.5U7 ( 3 . 4 . 4 )  

the boundary values of equation ( 3 . 4 . 2 )  may be expressed as 

( 3 . 4 . 5 )  

where the coefficients C are accordingly changed as ij 

CI1 = 1 . 2 1 4  

C 1 2  - 0 . 2 3 8  

C 2 2  = 0 . 2 3 8  ( 3 . 4 . 6 )  

For prescribing the wall values for the third moments, the algebraic 

correlation of Shir, equation (2.5.4), combined with the wall values of 

u.u equation ( 3 . 4 . 5 ) ,  is used as 

48 

- 
1 j' 

k2 a Y1 dP 

I' P dY2 
= 0 . 0 4  -- ( C . . k  - (1 - S . . )  --I ( 3 . 4 . 7 )  

13 .f ax, 
"iUj "k 

It was seen that the solution of the equation for the third moments did 

not seem to be affected by the choice of boundary conditions; for ins- 
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tance, even a value of zero at the wall did not change the solution 

appreciably. 

For prescribing the boundary values along the outflow section, at 

the exit, a condition of continuous flow with zero streamwise gradients 

was imposed for all the parameters. 

3 . 5  ComDutinp: Details 

a) Grid Selection 

In order to have a fine mesh in the recirculation and near-wall 

regions of the computational domain, a variable grid system was employed 

wherein the grid spacing increased monotonically in the downstream flow 

direction thus generating a fine spacing near the step and a relatively 

coarser mesh towards the far downstream end. In the transverse 

direction, however, the grid spacing was made finer near the bottom wall 

and it became coarser with increasing distance from this wall. 

Exploratory tests were made using mesh sizes of 32 x 32, 4 2  x 4 2  and 

52 x 52 with different grid expansion factors in the streamwise and 

transverse direction and with different axial lengths of the solution 

5 50 domain. Amano and Goel and Sindir employed the change in 

reattachment length as a basis for determining the grid independency 

stage and thus came up with a 42 x 4 2  mesh size to be grid independent. 

The study carried out here revealed that the shift in the reattachment 

length with changing the grid size and spacings is small compared to the 

change in other parameters like the mean velocities and the Reynolds 

stresses at different regions of the domain, making it difficult to 

ascertain a criterion for grid independency tests. Tahry used the 

Reynolds-Stress Model with a 32 x 30 grid to predict flow in an engine 

cylinder and observed a shift in the mean velocity profiles at 144"ATDC 

53 
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6 when a 4 5  x 4 5  grid was employed. the 

required grid number to ensure grid independence and the number of 

iterations (for the same grid number) increases with the Reynolds 

number. 

number of 2600  ( 5 1  x 5 1  grid). 

improvement in the Nusselt number predictions for flow into a pipe with 

a sudden expansion when the grid was changed from 22 x 22 to 5 0  x 5 0 .  

According to Armaly et al. 

They could not attain complete grid independence with a grid 

Likewise Chieng13 observed a marked 

In order to determine a reliable grid system, the grid size was kept 

fixed at 5 2  x 52 and exploratory tests were carried out with different 

grid spacings and lengths of the solution domain. Streamwise mean 

velocity and Reynolds stress profiles were compared with the 

experimental data for that particular set of experimental flow 

conditions. The combination of the grid parameters which had the best 

agreement was selected to be the final grid system for that particular 

set of experimental flow conditions. 

mentioned in Chapter 4 while comparing the results of the computation 

with experimental data. 

Specific grid details will be 

b) Converaence Criterion. 

After having specified the grid system, the cell dimensions and 

distances are evaluated in the computer program. Initial values of the 

parameters are then prescribed prior to starting the iteration process. 

The convergence criterion of the solution is based on the conserva- 

tion of mass and momentum in the flow domain. Formulation of equation 

( 3 . 1 . 2 )  for the mean streamwise and transverse velocity components 

expresses the momentum balance in the flow domain. 

these equations upto 1% of the total momentum inflow at the inlet of the 

channel, constitutes the criterion for convergence. Likewise, 

formulation of equation (3.1.2) for pressure, expresses the mass balance 

Satisfaction of 
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in the flow domain. Satisfaction of this equation upto 1% of the total 

mass inflow at the inlet of the channel, also constitutes the criterion 

for convergence. The total absolute residual source values for each of 

these equations is monitored for every iteration and the satisfaction of 

the above three criterion is taken to be the completion of convergence. 

In the solution of the transport equations of the third moments, the 

4 total residual source terms f o r  each equation are normalized by CpAU 

across the inlet, and are monitored for each iteration. 

the solution for u.u 

normalized maximum total residual source is less than 5.0 x or if 

the maximum difference between the residual source terms of two 

consecutive iterations is less than 3.0 x 10 . 

IN 
Convergence of 

is assumed to be completed if either the 
1 j% 

- 12 

In the solution of equations of the RSM incorporating the third 

moments, the above mentioned convergence criterion needs to be satisfied 

to qualify for the completion of convergence. However, the 

consolidation of the RSM by incorporating the transport equations of the 

third moments requires a large amount of computations. In order to 

conserve computational time, the convergence criteria for the third 

moments is made less stringent by relaxing the above mentioned limits to 

1.0 x lo-'' and 1.0 x respectively. 

c) Model Seauencinp 

The strong nonlinearity of the system of the equations makes 

this solution sometimes unstable and hence, susceptible to divergence. 

In order to avoid divergence, the new models developed in the study are 

introduced into the solution in sequence. 

The solution is begun with the standard k-E model. When the absolute 

residual source values drop down to about 3 % ,  the Reynolds-Stress Model 

is invoked which entails the solution of the transport equations of u.u 

along with the momentum and k-r equations iteratively. 
l j  



In the next sequence, the modified k and E equations are exchanged with 

the original version when the source term is down to about 2%. 

third order closure is introduced in the final sequence when the source 

The 

term is 1.5%. Convergence is assumed to be complete when the absolute 

residual source term drops down to 1% and when the source terms for 

uiuj\ have met their convergence criterion. 

of the equations (models) the solution process became less prone to 

By sequencing the solution 

divergence. 

Specific grid and model sequencing details are mentioned in Chapter 

4 while comparing the computational results with experimental data. 

computations were carried out using a UNIVAC 1100 computer. 

The 

The CPU 

time and iteration number/history details vary with the turbulence 

models and with the input data, and are hence mentioned in Chapter 4 

along with the specific grid and model sequencing details. 
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CHAPTER 4 

RESULTS AND DISCUSSION OF COMPUTATIONS IN BACKWARD-FACING STEP FLOWS 

4.1 Introduction 

This chapter presents the results of the study performed in 

mathematically modeling the turbulence phenomena of separating and 

reattaching flows. The models developed and presented in Chapter 2 are 

applied to plane backward-facing step flows and are compared with 

existing experimental data. 

As mentioned earlier, the reason for selecting backward-facing step 

flows to test the models is that this class of flows possesses most of 

the important features of flow separation and reattachment. 

greatly susceptible to modeling modifications but, on account of their 

They are 

simple geometry, they are easier to program and compute. Moreover, 

there exist considerably large sets of reliable and recent data on this 

class of flows which facilitates better comparison with the modifica- 

tions in modeling. 

5 In the previous paper , the results obtained with the RSM by solving 
- 

the transport equations of u.u equation (2.1.5), were compared with 
1 j' 

the results obtainetl by the k-c model, in which the Boussinesq 

correlation, equation (2.1.1), is used to evaluate the Reynolds 

stresses. Comparison was also made with the computed results of 

Sindir" using the Algebraic Stress Model (ASM)' and the experimental 

'"he ASM was developed by R ~ d i ~ ~  by relating the convective and 
diffusive transport of the Reynolds stresses to the turbulent kinetic 
energy k, which after simplification and rearrangement reduce to a set 
of algebraic equations for evaluating the stresses u.u . 

l j  
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32 data of Seegmiller and Driver47 and Kim et al. who had employed a 

laser doppler velocimeter (LDV) and hot wire anemometer, respectively, 

to acquire their data 

Regarding agreement with the experimental data, the results obtained 

by the RSM showed the best agreement in the recirculating region for 

predicting normal stresses and showed the best agreement in the 

reattachment region for predicting shear stresses. 

In general, it was found that the k-e model underpredicts whereas 

the ASM tends to overpredict the levels of the shear and normal 

stresses. The results of RSM, however, tend to remain in between the 

results obtained by the k-c model and the ASK. 

4 . 2  Transport Eauations for Third Moments of Turbulence with Low- 

Remolds Number Model 

Third moments evaluated by solving the transport equations of u u i juk 
18.20 are compared with the experimental data of Driver and Seegmiller 

and Chandrsuda and Bradshaw. 12 

After obtaining a good agreement with the experimental data in 

consideration, the final converged values of the mean velocities, 

Reynolds stresses, k and e are stored and are used later to solve the 

transport equation for u u iteratively. 

In the high-Reynolds number model of the transport equation for 
i jyC 

the value of the empirical constant C for the pressure-stress 
7 upj "k , 

effects Bijk, in equation (2.3.10) is recommended to be 5 . 8 ,  after 

matching the peak values of the third moments with experimental data. 

In the low-Reynolds number model, the values of the empirical 

constants C and C for the combined effects of the pressure-stress 
7 yw 
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were suitably modified ijk + 'ijkw' effect and the near-wall effect, 8 

and were set equal to 2.0 and 8.0, respectively. 

However, in solving the transport equations by both the high-as well 

as the low-Reynolds number models the effects due to the dissipation 

rate, E 

the results presented in this section. This is because the results 

presented in this section are for reference only. 

presented in the subsequent section have been obtained by the 

consolidation of the RSM and contain all the effects discussed earlier. 

defined by equation (2.3.12) have not been incorporated for ijk' 

The final results 

Figures 4.1 and 4.2 show the computed results of the third moments 

obtained by both high-and low-Reynolds number models of the transport 

equation and compare them with the two sets of experimental data 

mentioned earlier. 

number models give similar levels except near the wall, wherein the 

results obtained by the low-Reynolds number model are improved and are 

considerably superior. As discussed earlier, the reason for this 

improvement is attributed to the enhancement of the diffusive transport 

in the near-wall viscous region due to the additional dissipative 

effects. 

It is seen that both the high and low-Reynolds 

Figures 4.3 and 4.4 compare the profiles of the third moments 

obtained by the four algebraic models (equations (2.5.2), (2.5.3), 

(2.5.4), and (2.5.5)) and by those obtained through the solution of the 

transport equations, incorporating the low-Reynolds number model, with 

the experimental data. 

transport equations for the triple velocity correlation give a much 

better agreement with the experimental data than the results obtained by 

the corresponding algebraic models. 

the prediction near the wall. 

As shown in these figures, the results by the 

The transport model also improves 



4 3  ORIQINB PA= 
The transport model f @tRMi%'%!!Xts is very versatile in its 

application; its predictions are reliable in both homogeneous and 

inhomogeneous flows on account o f  its symmetry property in all the three 

directions. 

The values of the emperical constants, C and C were modified 
7 yw 

slightly after the incorporation of the dissipation term e and after ijk 
merging the transport equation model for u u with the RSM. Details 

of this follow in the next section. 
i juk 

4 . 3  Consolidation of RSM 

Results of the third moments presented so far had been obtained 

implicitly by retrieving and using the converged and stored values of 

the various parameters to solve the equations for u u iteratively 

without resolving the equations of those other parameters. 

i juk 

In the consolidation of the Reynolds-Stress Model, however, the 

transport equation for all the parameters like U and V velocities, k, e ,  

u.u and the third moments, upj "k 9 are solved together iteratively. 
l j  

This system of equations thus involves the iterative solution of a total 

of 11 equations all of which are nonlinear and intercoupled. 

As mentioned in the preceding section ( 4 . 2 ) ,  the values of the 

empirical constants C and C 

consolidation of RSM in order to comply with the new system of 

had to be suit- modified during the 
7 yw 

equations. 

8.0, respectively. 

The final recommended values of these constants are 3.0 and 

The solution is initially begun by solving the momentum equations 

with the original k and e equations (equation ( 2 . 2 . 5 )  and ( 2 . 2 . 6 ) ) .  

Model sequencing is employed to introduce the new equations into the 

solution stream. 
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When the absolute residual source term reaches 3 % ,  the transport 

equations for the Reynolds stresses are introduced into the computation 

stream and the iterative process is continued. At the source term value 

of 2 % ,  the new equations for k and e with the modified diffusive 

coefficients (equations ( 2 . 2 . 7 )  and ( 2 . 2 . 8 ) )  are introduced and 

iterative process is carried on. At the residual source term value of 

1.5%, the transport equations for u u (equation ( 2 . 4 . 1 ) )  are finally i jYc' 
merged into the computation stream. Complete convergence is assumed 

when the absolute residual source term drops to less than 1%. 

Experimental data of Driver and Seegmiller 

Bradshaw12 are compared with computational results obtained by three 

19,20 and Chandrsuda and 

turbulence models explained hereunder. 

Model I is the standard k-6 model where the Reynolds stresses are 

evaluated by using the Boussinesq's approximation. A total of 4 

transport equations get solved in this case. 

Model I1 refers to modified k-e model that the Reynolds stresses are 

obtained by solving the transport equations for u.u which contain the 

algebraic correlation of Daly-Harlow 
l j  

for uiujx . A total of 7 17 

transport equations get solved here. 

Model 111, however, uses the modified equations for k and e, and 
- 

solves the transport equations for u.u as well as u.u A total of 

11 transport equations are solved iteratively in this case. 
l j  1 jYc. 

In the following figures, unless specified otherwise, the following 

legend is to be used to identify the models. 

Model 

...... 
Line TvDe 

Model I 

Model I1 

Model I11 

0 Experimental Data 
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Figures 4.5 and 4 . 6  compare the U velocity profiles obtained by the 

different models with the two sets of experimental data. 

As shown in figure 4 . 5 ,  the results obtained by Model I11 are 

generally closer to the experimental data. 

the shear layer and is more encouraging in the redeveloping region. 

three models generally give similar results though the agreement is not 

quite as good with the data in figure 4.6. 

The agreement improves in 

The 

The similarity of the results obtained by the three models is 

attributed to the fact, that in the solution of the momentum equations, 

the Reynolds-stress terms are being handled through the turbulent 

viscosity approximation, and so do not appear in those equations 

explicitly. 

momentum equations (mass balance for proper convergence), they tend to 

be very sensitive to modeling modifications thereby making the solution 

unstable. 

divergence, the turbulent viscosity (Boussinesq's approximation) is 

retained in the momentum equations. 

This is because, due to the greater significance of the 

In order to overcome this instability and to avoid 

- 
Figures 4.7 and 4.8  compare the shear stress, uv, profiles. It is 

seen that for any given axial location, all the three models predict a 

more or less similar transverse location of the peak values. The levels 

predicted by Model I are the lowest of all the three models. 

tends to overpredict in figure 4.7 whereas Model I11 overpredicts in 

Model I1 

figure 4 . 8 .  

a better agreement with the experimental data. 

It is seen that the predictions by Model I11 have generally 

- 
2 Figures 4.9 and 4.10 compare the normal stress u profiles at 

different axial distances from the step. The predictions by Model I are 

always lowest whereas Model I11 predicts the highest values. 
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Predictions by Model II seem to give a better agreement with the 

experimental data. - 
Figures 4.11 and 4.12 compare the normal stress v2 profiles at 

different axial distances from the step. It is seen that Model I - 
exhibits an opposite trend when predicting the normal stresses uL and 

2 v . Model I predicts the largest values whereas Model I1 predicts the 

lowest values. The agreement with the experimental data in and around 

the recirculation region is better with Model 111. 

Figure 4.13 compares the profiles of the kinetic energy k obtained 

by different models. 

been obtained by multiplying the sum of the normal stresses (u and v ) 

Experimental values of the kinetic energy have - - 
2 2 

by 0.75. 

the experimental data whereas Model I is quite deficient in its 

predictions. 

of the transport equations of the third moments and the modified 

equations of k and E seems to be encouraging from this figure. 

It is seen that Model I11 gives the best predictions with 

The improvement made in the RSM due to the incorporation 

Figure 4.14 compares the energy dissipation rate profiles. Model I 

seems to give a better agreement whereas Model I1 is not quite as good. 

Predictions by Model I11 are intermediate. 

Success in predicting the trends of the various parameters discussed 

above not only depends upon the type of model being employed but also 

upon the particular parameter being considered and the location inside 

the flow domain. 

The choice of models had very little influence on predicting the 

mean velocity profiles. In predicting the Reynolds stresses, however, 

Model I11 gave superior results in and around the reattachment region. 

Model I seemed to give better predictions for v 
- 

2 and energy dissipation 

rate profiles. Results obtained by Model I1 seemed to be closer to the 

results by Model I11 and generally were better than those by Model I. 



Figures 4.15 through 4 .21  show the profiles of the various 

components of the third moments at different axial locations from the 

step obtained by Models I1 and 111. 

Profiles obtained by Model 111 are consistently superior to those 

obtained by Model 11. 

rather large for the profiles of vw; both the models underpredict the 

The discrepancy with the experimental data is 
- 

levels considerably although Model 111 is still better than Model 11. 

As discussed earlier, the solution of the complete transport 

equations of the third moments entails taking into consideration, the 

phenomena of convection, diffusion, generation, redistribution and 

dissipation which consequently yields greater accuracy in the turbulence 

model. 
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Table 4.1: Commtational Details 

Computational Details 

19 MODEL EQUATIONS Driver and Seegmiller Chandrsuda and Bradshawl' 
BEING (Yo/H = 8.0) (Yo/H = 2 . 5 )  
SOLVED 

Iteration CPU Iteration CPU 
Number Time Number Time 

(mins ) (mins ) 

I 
2 . 1 . 2  
2 . 2 . 5  
2 . 2 . 6  

265 25 500  36 

I1 

2 . 1 . 2  
2 . 2 . 5  
2 . 2 . 6  222 28 44 3 4 2  

2 . 1 . 1 5  

111 

2 . 1 . 2  
2 . 2 . 7  
2 . 2 . 8  
2.1.15 
2.4.1 

240 46  603  7 2  
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CHAPTER 5 

CONCLUDING REMARKS 

The salient feature of this study lies in the fact that it has taken 

the Reynolds Stress Model of turbulence to a higher degree of 

sophistication and accuracy through the development and subsequent 

introduction of the transport equations of the third moments into it. 

Being primary diffusive transporters, the correct simulation of the 

third moments, thus enables genuine government of the Reynolds stresses 

in the flow fields with separation, reattachment and recirculation. 

Inadequacy of the existing algebraic equations for evaluating the third 

moments was demonstrated, and approximate correction factors were 

recommended for these equations by comparing them with the experimental 

data. 

Development of the transport equations of third moments required the 

formulation of their equation and then the modeling of the various terms 

in the formulated equation which was sometimes attained through the use 

of empirical constants. 

behavior of the third moments was investigated and suitable values of 

these constants were recommended. 

The relative effect of the constants on the 

A low-Reynolds number model was developed and incorporated into the 

transport equations of the third moments which greatly improved their 

predictions near the wall. 

With regard to the Reynolds stresses, however, the RSM predicted 

better normal stresses in the recirculating regions and better shear 

stresses in the reattachment region. 
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The highlight of this theoretical study is the consolidation of the 

RSM by merging it with equations of k and z containing the new 

recommended diffusion coefficients and the transport equations of the 

third moments containing the low-Reynolds number effect. 

equations required the iterative solution of 11 non-linear and 

intercoupled equations. The mean velocity, Reynolds stresses, k, z and 

third moments profiles thus obtained were compared with two sets of 

experimental data and with similar computational results obtained by the 

k-r model and the original RSM. 

This system of 

In the modeling process and the determination of empirical constants 

the experimental data have been relied on heavily. 

mental data are.associated with various levels of uncertainties, the 

corresponding theoretical models are also associated themselves with 

some of these uncertainties which may be reduced in future studies. 

Since the experi- 
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